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Figure 1. SF3D Creates High-quality Object Meshes from Single Images with Materials, Delighting and UV-unwrapped textured
meshes in 0.5 s. Here, we show sample SF3D results from different input images. SF3D handles both realistic and non-realistic styles well.

Abstract

We present SF3D, a novel method for rapid and high-quality
textured object mesh reconstruction from a single image in
just 0.5 seconds. Unlike most existing approaches, SF3D is
explicitly trained for mesh generation, incorporating a fast
UV unwrapping technique that enables swift texture gener-
ation rather than relying on vertex colors. The method also
learns to predict material parameters and normal maps to
enhance the visual quality of the reconstructed 3D meshes.
Furthermore, SF3D integrates a delighting step to effec-
tively remove low-frequency illumination effects, ensuring
that the reconstructed meshes can be easily used in novel
illumination conditions. Experiments demonstrate the su-

†Work done during internship at Stability AI.

perior performance of SF3D over the existing techniques.
Project page with code and model: https://

stable-fast-3d.github.io

1. Introduction

High-quality object meshes are essential for various use
cases in movies, gaming, e-commerce, and AR/VR. In this
work, we tackle the problem of generating high-quality 3D
object mesh from a single image. This is a ill-posed and
challenging problem as this requires reasoning about the ob-
ject’s 3D shape and texture from only a single 2D projection
(image) of that object. Single-image object generation can
simplify the tedious and manual object creation process.

The quality of object mesh generation from a single im-
age has dramatically improved in the past couple of years

https://stable-fast-3d.github.io
https://stable-fast-3d.github.io


GT TripoSR SF3D (Ours)
L

ig
ht

B
ak

e-
in

V
er

te
x

C
ol

or
s

M
ar

ch
in

g
C

ub
es

M
at

er
ia

lP
ar

am
et

er
s

Tr
ip

oS
R

SF
3D

(O
ur

s)

GT TripoSR SF3D (Ours)

L
ig

ht
B

ak
e-

in
V

er
te

x
C

ol
or

s
M

ar
ch

in
g

C
ub

es
M

at
er

ia
lP

ar
am

et
er

s

Tr
ip

oS
R

SF
3D

(O
ur

s)

GT TripoSR SF3D (Ours)
L

ig
ht

B
ak

e-
in

V
er

te
x

C
ol

or
s

M
ar

ch
in

g
C

ub
es

M
at

er
ia

lP
ar

am
et

er
s

Tr
ip

oS
R

SF
3D

(O
ur

s)

GT TripoSR SF3D (Ours)

L
ig

ht
B

ak
e-

in
V

er
te

x
C

ol
or

s
M

ar
ch

in
g

C
ub

es
M

at
er

ia
lP

ar
am

et
er

s

Tr
ip

oS
R

SF
3D

(O
ur

s)

GT TripoSR SF3D (Ours)

L
ig

ht
B

ak
e-

in
V

er
te

x
C

ol
or

s
M

ar
ch

in
g

C
ub

es
M

at
er

ia
lP

ar
am

et
er

s

Tr
ip

oS
R

SF
3D

(O
ur

s)

GT TripoSR SF3D (Ours)

L
ig

ht
B

ak
e-

in
V

er
te

x
C

ol
or

s
M

ar
ch

in
g

C
ub

es
M

at
er

ia
lP

ar
am

et
er

s

Tr
ip

oS
R

SF
3D

(O
ur

s)

GT TripoSR SF3D (Ours)

L
ig

ht
B

ak
e-

in
V

er
te

x
C

ol
or

s
M

ar
ch

in
g

C
ub

es
M

at
er

ia
lP

ar
am

et
er

s

Tr
ip

oS
R

SF
3D

(O
ur

s)

Figure 2. SF3D Improvements on Different Prevalent Issues.
Here, we compare our results with TripoSR [54]. The top shows
the effect of light bake-in when relighting the asset. SF3D pro-
duces a more plausible relighting. By not using vertex colors, our
method is capable of encoding finer details while also having a
lower polygon count. Our vertex displacement enables estimat-
ing smooth shapes, which do not introduce stair-stepping artifacts
from marching cubes. Lastly, our material property prediction al-
lows us to express a variety of different surface types.

with the advances in transformer models [18, 20, 54], large
synthetic datasets [11] and 3D-aware image/video genera-
tive models [31, 51, 57, 67]. Especially, the transformer-
based reconstruction models [18, 20, 54] demonstrate phe-
nomenal generalization capabilities on real-world images
despite being trained only on synthetic datasets while also
generating 3D assets from a single image in under 1 s.

Despite this rapid progress, several issues remain in
these feed-forward fast 3D reconstruction models [18, 20,
54]. These techniques often produce 3D assets that are
not usable for downstream applications or require labori-
ous manual post-processing. We identify several key issues
in these techniques and propose a fast generation technique
called ‘Stable Fast 3D’ (SF3D) that generates higher quality
and more usable 3D assets from single images, while also
retaining the fast generation speed within 0.5 seconds on a
H100 GPU. Next, we briefly introduce these issues and how
we tackle those in SF3D.

Light Bake-in. Having shadows or other illumination ef-
fects in a given input image is common. Most existing
works bake these effects into textures, making the resulting
3D assets less usable. Having consistent lighting helps in

easy integration into graphics pipelines. In SF3D, we pro-
pose decomposing the illumination and reflective properties
by incorporating explicit illumination and a differentiable
shading model using Spherical Gaussians (SG). Fig. 2 (top
row) shows a sample result of SF3D, where the light bake-in
is considerably reduced compared to the prior art.
Vertex Coloring. Another issue we found in most 3D gen-
eration models is that they produce meshes with a high ver-
tex count, using vertex coloring to represent object texture.
This makes the resulting 3D assets inefficient to use in ap-
plications such as games. A key issue is the additional pro-
cessing time of UV unwrapping, which can take longer than
the entire object generation. For example, xatlas [72] and
geogram [27], can take up to 30 s or 10 s for a single asset,
respectively. To tackle this, we propose a highly paralleliz-
able fast box projection-based UV unwrapping technique to
achieve a 0.5 s generation time. The effect of relying on
vertex coloring vs. UV Unwrapping can be seen in Fig. 2
(middle row), where TripoSR captures fewer details than
SF3D despite requiring 10× higher polygon count.
Marching Cubes Artifacts. The feed-forward networks
often create volumetric representations such as Triplane-
NeRFs [9] which are converted to meshes using the March-
ing Cubes (MC) [35] algorithm. MC can cause ‘stair-
stepping’ artifacts, which can be somewhat reduced by in-
creasing the volume resolution. However, this comes at the
cost of large computational overhead. In contrast, SF3D
uses more efficient architecture for higher resolution tri-
planes and also produces meshes using DMTet [46] with
learned vertex displacements and normal maps, resulting in
smoother mesh surfaces. Fig. 2 demonstrates the smooth-
ness of the SF3D mesh compared to that of TripoSR.
Lack of Material Properties. The generations from previ-
ous feed-forward techniques often look dull when they are
rendered using different illuminations. This is mainly due
to the lack of explicit material properties in the output gen-
erations, which can influence the light reflection. To tackle
this, we predict non-spatially varying material properties.
This addition is apparent when rendering different gener-
ated objects in Fig. 2 (bottom row).

With these advances, SF3D can generate high-quality 3D
meshes from a single image with several desirable prop-
erties for downstream applications on both shapes (low-
polygon yet smooth) and textures (Illumination disentan-
gled UV maps with material properties). The 3D assets
are small in size (under 1MB) and can be created in 0.5 s.
For text-to-3D mesh generation, a fast Text-to-Image (T2I)
model [45] can be combined with SF3D to produce meshes
in about 1 s. Experimental results demonstrate higher qual-
ity results with SF3D compared to the existing works. In
short, SF3D provides a comprehensive technique for fast,
high-quality 3D object generation from single images, ad-
dressing both speed and usability in practical applications.



2. Related Work

3D Reconstruction using Image Generative Priors. Dif-
fusion models [19, 50] have proven to be powerful gener-
ative models for various tasks [2, 3, 15, 43, 44, 56]. Sev-
eral works such as Zero123 [31] and others [11, 25, 51, 80]
leverage the object priors in these diffusion models by
adapting the generative models for 3D generation. Score
Distillation Sampling (SDS) [41] is often used to optimize
3D representation using the 2D diffusion models. However,
it was found that relying solely on the image prior does not
always produce consistent multi-view results. This issue is
improved in follow-up works [32, 37, 47, 49] by simultane-
ously generating multiple views of an object. Another ap-
proach is to explicitly introduce 3D awareness [29, 30, 71]
or use a multi-view diffusion process [2, 14, 26, 33, 34,
36, 49, 57, 62, 79] to generate 3D objects. While diffusion
models can generate videos or multi-view images relatively
quickly, they require a 3D reconstruction step to create 3D
mesh from a single image. Even with fast techniques, gen-
erating an object can still take several minutes. Our work
focuses on fast generation speeds in 0.5 s for image-to-3D.

Feed-Forward 3D Reconstruction. Recently, LRM [20]
and the follow-up works [18, 54] demonstrated that the fast
and reliable 3D generation is possible using feed-forward
networks trained on large synthetic datasets. These works
use large transformer models to directly predict triplanes
as the volume representations, which can be ray-marched
using NeRF [38]. This allows these models to train on
multi-view datasets, as only the rendering loss is required
for training. A set of follow-up works address to remedy
the reliance on multi-view datasets [23, 58, 65]. This can
produce meshes from images in seconds compared to the
generative-prior based approaches.

Several follow-up works emerged which use Gaussian
Splatting [24] as the representation [52, 53, 70, 76, 82] or
directly integrate a mesh prediction [60, 63, 66, 68, 73, 81].
Another group of methods integrates diffusion models with
the feed-forward models by either directly generating the
triplanes [59], using LRM as the denoiser [69], or using it
as the conditioning [61]. As single-image reconstruction
is a challenging task, several models leverage the exten-
sive prior of multi-view diffusion models to generate mul-
tiple views of an object which the feed-forward model then
uses to produce a 3D output [28, 53, 60, 63, 66, 68, 70,
73, 76, 81]. Generally, these models learn the scene’s ra-
diance, meaning lighting information is baked into the ob-
jects. LDM [66] tries to remedy this by learning an ad-
ditional shading color to capture the shading information.
However, training requires having access to the ground-
truth albedo color as a supervision signal. Compared to
LDM, our method also learns an illumination model, en-
abling training on regular multi-view datasets, and we pre-

dict more material properties. We also tackle fast UV un-
wrapping, so unlike previous works, we do not have to rely
on vertex colors while keeping the 3D generation time short.
Material Decomposition. Predicting only the radiance of
an object has the downside that relighting does not pro-
duce convincing results. Current works in single scene op-
timization are often based on NeRF [38] or Gaussian Splat-
ting [24] and decompose multiple input images (> 50)
into light and materials [4–6, 13, 17, 39, 75]. These meth-
ods often predict materials properties of a Physically Based
Rendering (PBR) [7] shading model. A few recent works
tackle joint 3D shape and material generation, such as
UniDream [33] or Fantasia3D [10] by optimizing the mate-
rial properties using a SDS loss. However, this optimization
takes several hours to converge. Another set of works aims
to texture existing objects [55, 78] using diffusion models.
Our work generates a textured object with homogeneous
material properties from a single image under natural illu-
mination at fast generation speeds.

3. Method

We propose SF3D, which converts a single object image
into a textured and UV-unwrapped 3D model with de-lit
albedo and material properties. As explained in the intro-
duction section, with SF3D, we aim to fix the issues shown
in Fig. 2 and introduce additional quality enhancements.
Preliminaries. Our method is based on TripoSR [20, 54],
which trains a large transformer-based network that outputs
a Triplane [9] based 3D representation from a single im-
age. TripoSR is trained with multi-view image datasets
without explicit 3D supervision. In TripoSR, the image
is encoded using DINO [8] and passed through a Trans-
former network to generate a 3D triplane at a resolution
of 64 × 64. The triplane features are then decoded into
RGB colors and rendered using standard NeRF [38] render-
ing into multiple views for training. TripoSR only learns
the view-independent colors and cannot model reflective
objects. Several issues of the TripoSR (and other similar
networks) are explained in the introduction (Fig. 2).
SF3D Overview. With SF3D, we propose several improve-
ments to TripoSR [54] to improve the output quality in dif-
ferent aspects. As illustrated in Fig. 3, SF3D has 5 main
components: 1. An enhanced transformer network that
predicts higher resolution triplanes, which helps in reduc-
ing aliasing artifacts (top left in the figure); 2. A material
estimation network (bottom left) predicts material proper-
ties, which helps handle an object’s reflective properties.
3. Illumination prediction (bottom right) to tackle illumina-
tion disentangling, which helps in outputting homogeneous
objects without shadows; 4. Mesh extraction and refine-
ment with the prediction of vertex offsets and surface nor-
mals (top right), which helps in smoother output shapes
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Figure 3. SF3D Overview. SF3D improves on TripoSR by addressing the issues in Fig. 2 with 5 novel modules: 1. An enhanced transfomer
for higher resolution triplanes (top left); 2. Material estimation with Material Net (bottom left); 3. Explicit illumination estimation using
Light Net (bottom right); 4. Smooth mesh extraction with the estimation of vertex offsets and normals (top right); and finally 5. an export
pipeline with fast UV-unwrapping (right).
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Figure 4. Triplane Resolution Aliasing. We found that
low-resolution triplanes struggle with high-frequency and high-
contrast textures and produce grid-like aliasing artifacts. Our
method increases the triplane size from 642 to 3842 allowing our
method to reproduce these textures with fewer artifacts.

with fewer mesh extraction artifacts; and 5. A fast UV-
unwrapping and export module (right) that helps produce
low-poly meshes and high-resolution textures. Next, we ex-
plain each of these modules in detail.

3.1. Enhanced Transformer
First, as illustrated in Fig. 3, we transitioned from DINO [8]
used in TripoSR to the improved DINOv2 [40] network to
obtain image tokens for the transformer. We observed that
low-resolution (64×64) triplanes used in TripoSR and other
networks [18, 20] introduce noticeable artifacts, especially
in scenarios with high-frequency and high-contrast texture
patterns. Fig. 4 (Middle) illustrates these aliasing artifacts.
The triplane resolution is directly correlated with the pres-
ence of these artifacts, which we identify as an aliasing is-
sue that can be mitigated by increasing the resolution. The
increased capacity also improves the geometry.

Naively increasing the triplane resolution quadratically
increases the transformer complexity. We take inspiration
from the recent PointInfinity [22] work and propose an en-

hanced Transformer network that outputs higher-resolution
triplanes. PointInfinity proposes an architecture where the
complexity remains linear concerning the input size by
avoiding the self-attention on the higher resolution triplane
tokens. With this addition, we produce 96 × 96 resolution
triplanes with 1024 channels. We further increased the tri-
plane resolution by shuffling the output features across di-
mensions, resulting in 40-channel features at 384×384 res-
olution. Further details about the architecture are available
in the supplements. Fig. 4 (Right) shows fewer aliasing ar-
tifacts with our higher resolution triplanes.

3.2. Material Estimation
To enhance the output mesh appearance for the reflective
objects, SF3D also outputs the material properties of metal-
lic and roughness parameters. Ideally, one would like to
estimate the spatially varying material properties at 3D out-
put locations, but this is an inherently challenging and ill-
posed learning problem that requires many high-quality 3D
data with spatially varying materials. To overcome these
challenges, we propose simplifying the material estima-
tion problem by estimating a single metallic and roughness
value for the entire object. Although this non-spatially vary-
ing material mainly applies to homogeneous objects, we
find that it significantly improves the visual quality of our
mesh predictions. Specifically, as illustrated in Fig. 3, we
propose ‘Material Net’ that predicts the metallic and rough-
ness values from the input image.

For pre-training the Material Net, we selected a subset of
3D objects with PBR material properties from the synthetic
training dataset and rendered them under different illumi-
nations and viewpoints. We observe that directly regressing
the material values often leads to training collapse, where
the network always predicts a roughness value of 0.5 and



a metallic value of 0. As a remedy, we propose a proba-
bilistic prediction approach, where we predict the parame-
ters of a Beta distribution and minimize the log-likelihood
during training. This stabilizes the training by allowing for
uncertainty in this ambiguous material estimation task and
prevents the collapse observed with direct regression. Dur-
ing inference and training of SF3D, we do not sample the
distribution but calculate the mode of the distribution.

We implement the Material Net by first passing the im-
age through the frozen CLIP image encoder [42] to extract
semantically meaningful latents and pass them through 2
separate MLPs with 3 hidden layers and 512 width to out-
put the parameters for the distributions.

3.3. Illumination Modeling
We propose explicitly estimating the illumination in the in-
put image to account for varying shadings (e.g., shadows).
Otherwise, the 3D outputs would have baked-in illumina-
tion effects into their RGB colors, as illustrated in Fig. 2.
To this end, we propose a Light Net (Fig. 3 bottom right)
that predicts the spherical Gaussian (SG) illumination map
from the estimated triplanes. The rationale here is that the
triplanes encode the global structure and appearance of the
input object and should account for the 3D spatial relation-
ships and changes in illumination over the object surface.
We use the 96 × 96 resolution triplanes from the trans-
former and pass them through 2 CNN layers, followed by
a max pool and final MLP with three hidden layers and a
feature dimension 512 for all layers. Light Net outputs the
grayscale amplitude values for 24 SGs with a Softplus ac-
tivation to ensure positive values. The axis and sharpness
values for these SGs remain fixed and are set up to cover
the entire sphere. These amplitude values allow us to imple-
ment a deferred physically based rendering approach simi-
lar to that used in NeRD [4].

Our method also incorporates a lighting demodulation
loss LDemod during the training phase, inspired by the works
of Hasselgren et al. [17] and Voleti et al. [57]. This loss
function ensures that the lighting on an object with an en-
tirely white albedo closely matches the luminance of the in-
put image. The demodulation loss enforces consistency be-
tween the learned illumination and the lighting conditions
observed in the training data. This can be seen as a bias to
resolve the ambiguity between appearance and shading [1].

3.4. Mesh Extraction and Refinement
Fig. 3 (top right) illustrates this module. We convert the es-
timated triplanes into a mesh using a differentiable March-
ing Tetrahedron (DMTet) [46] technique. As explained in
the introduction (Fig. 2), Marching Cubes (MC) usually re-
sults in several staircase artifacts on the resulting meshes.
We propose two new MLP heads to refine the meshes as a
remedy. One predicts vertex offsets vo ∈ R3, and another
one predicts the world space vertex normals n̂ ∈ R3. In-

Extracted Mesh UV Unwrap-
ping Fig. 6

UV
Occupancy
+ Position

Material
Query

UV Island Margin

Figure 5. Export Pipeline. Our export process starts with the
mesh and is followed by UV unwrapping, occupancy and world
position baking, material querying, and UV island margins.

spired by MeshLRM [60], we also implemented small split
decoder MLPs for these two networks, which proved ben-
eficial for performance and efficiency. We found that the
vertex offsets can reduce artifacts from the tetrahedral grids,
and the world space normals can add details to the flat mesh
triangles. Given that the normal predictions are initially un-
reliable, we stabilize the training by using spherical linear
interpolation (slerp) between the geometry normals n ∈ R3

and our predictions. This slerp is used during the initial 5K
training steps.

To regularize the mesh estimation, we use several train-
ing losses: a normal consistency loss LNrm consistency, a
Laplacian smoothness loss LLaplacian as implemented by
threestudio [16], and a vertex offset regularization LOffset =
v2
o . For supervising the normal prediction, we use a ge-

ometry normal replication loss LNrm repl = 1 − n · n̂,
where · is the dot product and a normal smoothness loss
to ensure the smoothness of normal predictions in 3D. This
loss is achieved by adding a small offset ϵ ∈ R3 around
a query location x ∈ R3. The loss is then defined as
LNrm smooth = (n̂(x)− n̂(x+ ϵ))2.

3.5. Fast UV-Unwrapping and Export
The final stage of SF3D is an export pipeline that outputs
the final 3D mesh along with the corresponding UV atlas.
Our export pipeline follows multiple stages to ensure effi-
cient and effective handling of 3D models. An overview
of these stages is provided in Fig. 5, where we first do fast
UV-unwrapping. We then bake the world positions and oc-
cupancy to the UV atlas, which we use for querying the
albedo and normal. This results in the final textured 3D
mesh. The entire export process only takes 150ms.

UV unwrapping is traditionally a computationally inten-
sive process. Existing methods require several seconds for
UV unwrapping, which is impractical when we are aiming
for sub-second generation speeds. To address this ineffi-
ciency, we propose a Cube projection-based unwrapping
method. The key advantage of this approach is it is par-
allelizable: each face of the mesh can independently decide
which cube face to project onto, based on its surface normal.

Our UV unwrapping process is illustrated in Fig. 6. We
initially align the output mesh based on the most dominant
axes with the cube projection coordinate system. After each
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Figure 6. UV Unwrapping. Our UV unwrapping technique uses
projection mapping, allowing each face to independently select a
projection, enabling easy parallelization. A naive approach could
lead to the same UV coordinates being assigned to different ver-
tices due to occlusions. We identify potential overlaps from oc-
clusions on the 2D mapped surfaces and relocate them to different
areas within the UV atlas. Any remaining areas are placed in the
bottom right of the UV atlas. This method minimizes distortion
and ensures most surfaces are preserved in a connected area.

mesh face selects the appropriate cube direction, we address
potential occlusions. Without managing occlusions, differ-
ent faces could share the same UV coordinates, leading to
artifacts in the texture. We detect occlusions in the UV atlas
by performing 2D triangle-triangle intersection tests. We
filter triangles by their proximity to the triangle centers to
make the process efficient. If an intersection is detected,
we sort the intersecting triangles based on their depth in the
plane, keeping the first intersection and marking the others
for reassignment to different UV atlas areas. The first in-
tersection is placed in the top third of the UV atlas and the
second intersection is placed in the bottom left area. The
remaining triangles are organized into a grid in the bottom
right section of the atlas. We also rotate each island to min-
imize the shading seams by following radial z tangent ori-
entation. We then assign each face to a position in the UV
atlas, as illustrated in Fig. 6.

Next, we bake the world positions and the occupancy
data with UV-unwrapping into the final UV atlas. This al-
lows us to query the world positions within the chart from
our triplanes and decode the albedo and surface normals
into additional textures. We transform the world-space nor-
mal map into a tangent-space normal map using the tangent
and bitangent vectors. We add margins to the UV atlases to
prevent visible seams at UV island borders. This is achieved
through an iterative process: in each iteration, we perform
a 3× 3 partial convolution based on the occupied areas, us-
ing the valid regions of the kernel. We then use a 3× 3 max
pooling operation to expand the occupied regions of the UV
atlas, placing the mean values in the newly expanded areas
while preserving the original regions. This iterative exten-
sion ensures that the textures smoothly blend outwards.

We incorporate our image estimator’s metallic and

roughness values and pack everything into a GLB file, ready
for efficient rendering and use in various applications.

3.6. Overall Training and Loss Functions
Directly training our method with mesh rendering yielded
unsatisfactory results. Hence, we pre-trained it on the NeRF
task. Following this pre-training, we transitioned to mesh
training, replacing the NeRF rendering with differentiable
mesh rendering and SG-based shading. Given the introduc-
tion of light estimation, we found that using larger batch
sizes aids convergence. We initiate training with a batch
size of 192 and a rendering resolution of 128 × 128, train-
ing for 10K steps. In the subsequent stage, we reduce the
batch size to 128 and increase the resolution to 256 × 256,
continuing for 20K steps. The final stage involves 80K steps
at a 512× 512 resolution with a batch size of 96.

The loss functions remain consistent across all mesh
training stages. We primarily use image-based metrics to
compare our rendered and shaded reconstructions Î with
the GT image I . These include MSE LMSE and LPIPS [77]
LLPIPS losses. We also incorporate a mask loss LMask be-
tween the GT mask M and the predicted opacity M̂ , defined
as an MSE loss. We then define three loss formulations for
the rendering, mesh regularization, and shading:

Lrender = λMSE︸ ︷︷ ︸
10

LMSE + λLPIPS︸ ︷︷ ︸
2

LLPIPS + λMask︸ ︷︷ ︸
10

LMask (1)

Lmesh = λLaplacian︸ ︷︷ ︸
0.01

LLaplacian + λNrm Consistency︸ ︷︷ ︸
0.001

LNrm consistency + λOffset︸ ︷︷ ︸
0.1

LOffset (2)

Lshading = λNrm repl︸ ︷︷ ︸
0.2

LNrm repl λNrm smooth︸ ︷︷ ︸
0.02

LNrm smooth + λDemod︸ ︷︷ ︸
0.01

LDemod (3)

The total loss is defined as:
L = Lrender + Lmesh + Lshading (4)

4. Results

Datasets. For comparisons, we select GSO [12] and Om-
niObject3D [64] as our primary datasets for evaluation. We
select 278 random scenes from GSO and 308 scenes from
OmniObject3D for comparison. We render 16 views around
the object and select a frontal as the conditioning view.
Baselines. We compare with several recent methods for fast
3D object reconstruction from a single image. We mainly
focus on fast reconstruction models to maintain a consis-
tent evaluation protocol across different techniques. We
also mainly consider meshes as outputs and perform the
evaluations on the mesh. We use the official implemen-
tation for all the baslines, and we evaluate all the meth-
ods under the same protocol. We selected several recent
and concurrent works with source code releases for com-
parisons. Specifically, we compare against OpenLRM [18],
TripoSR [54], LGM [53], CRM [59], InstantMesh [68], and
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Figure 7. Comparison on GSO and OmniObject3D. Notice how our reconstructions produce consistent results with detailed textures
and smooth shading.

GSO OmniObject

Method Time [s]↓ CD↓ FS@0.1↑ FS@0.2↑ FS@0.5↑ CD↓ FS@0.1↑ FS@0.2↑ FS@0.5↑

ZeroShape [21] 0.9 0.160 0.489 0.759 0.952 0.144 0.507 0.786 0.969
OpenLRM [18] 2.0 0.160 0.472 0.751 0.954 0.139 0.521 0.798 0.971
TripoSR [54] 0.3 0.111 0.645 0.869 0.980 0.103 0.672 0.889 0.986
LGM [53] 64.6 0.195 0.376 0.654 0.928 0.205 0.344 0.631 0.921
CRM [59] 10.2 0.179 0.411 0.699 0.945 0.158 0.469 0.752 0.960
InstantMesh [68] 32.4 0.138 0.549 0.801 0.967 0.138 0.560 0.811 0.964

SF3D (Ours) 0.5 0.098 0.701 0.894 0.988 0.090 0.726 0.920 0.990

Table 1. Comparison on 3D Metrics Demonstrating State-of-the-art Performance of SF3D. It is worth pointing out that all other
methods produce meshes with drastically higher polygon counts. This allows them to follow the surfaces more closely than our low
polygon meshes. Our meshes can outperform the others by using our learned vertex offsets. Our method is also one of fastest to generate
a mesh from an image due to our efficient extraction pipeline.

GSO

Method CD↓ FS@0.1↑ FS@0.2↑ FS@0.5↑

TripoSR [54] 0.111 0.645 0.869 0.980
SF3D w/o Enh. Transformer 0.108 0.660 0.872 0.982

SF3D (Ours) 0.098 0.701 0.894 0.988

Table 2. Ablation. As our model builds upon TripoSR, we use
it as our baseline. Without our enhanced transformer, our mesh
training has already improved upon it. With our architectural im-
provements, we outperform the baselines significantly.

ZeroShape [21]. For OpenLRM, we selected the large Ob-
javerse 1.1 model. We use H100 GPU for comparisons.

Evaluations. For runtime comparisons, we consider the
meshes as the final output and calculate the entire run time
required to go from the input image to the final mesh.
We then perform separate evaluations for the shape qual-
ity. Several models cannot be conditioned on intrinsic and
extrinsic camera parameters, so we propose performing an
alignment step. We normalize the mesh, perform brute-
force rotation alignment tests, and select the rotation with
the lowest Chamfer Distance (CD). We then run another
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Figure 8. Decomposition Results. Here, we use high-quality ob-
jects from Polyhaven [74] and render them under natural illumi-
nation. These illuminations are highly challenging for material
estimation. Still our model estimates sensible material properties,
which allow for a convincing relighting.
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Figure 9. Image-To-Mesh Time vs. Reconstruction Quality.
Our method is not only one of the fastest reconstruction methods,
it is also capable of producing highly accurate geometry.

alignment step using Iterative Closest Point (ICP), where
we further optimize the rotation and translation. We then
calculate the standard shape metrics of CD and F-score (FS)
after this alignment. This alignment might still misalign
symmetric objects for re-rendering. Hence, we only report
indicative rendering metrics in the supplements.
Triangle Counts. We run each method under the default
configuration. As the triangle count varies drastically based
on the 3D mesh, we report the triangle count for a single
mesh here: InstantMesh 57.3K, CRM 24.1K, LGM 42.1K,
TripoSR 32.1K, OpenLRM 662K, Ours 27.4K.
Results. In Table 1, we compare our method with all the
baselines. Here, our method outperforms all current and
concurrent baselines on both CD and F-scores. This in-
dicates that our method can reconstruct accurate shapes,
even if our models have fewer polygons than the other base-

lines. From the visual comparisons in Fig. 7, it can be seen
that the accurate shape reconstruction of SF3D also trans-
lates well to the visual quality of the 3D assets. Here, it
is worth noting that SF3D also handles fine geometry like
the glasses well and produces consistent shapes with more
detailed textures than the SOTA methods. Moreover, the re-
sults also show sensible material properties and albedo as
seen in Fig. 8. This is highly challenging as the objects are
only rendered under natural illumination. Estimating mate-
rial properties without any knowledge about the illumina-
tion is a highly ambiguous problem.
Inference Speed vs. Reconstruction Quality. In Fig. 9, we
plot the inference speed vs. reconstruction quality for dif-
ferent techniques. The best-performing methods should be
located in the top left corner. While our method is slightly
slower than TripoSR, the reconstruction accuracy is con-
siderably better for SF3D. It is also worth noting that our
reconstruction has smoother shading with less pronounced
marching cube artifacts, as seen in Fig. 7. The final apparent
asset quality is thus even higher for our method.
Ablations. We evaluate our additions in Table 2 against
baseline models. Our method is built upon TripoSR, so we
use it as our initial baseline. If we add mesh training and re-
lighting as a fine-tuning step, we can see that ’SF3D w/o
Enhanced Transformer’ already improves upon TripoSR,
demonstrating the use of our mesh-based training. This im-
provement is mainly due to the efficient rendering, enabling
higher resolution supervision during training and smoother
meshes from vertex offsets. If we add our high-resolution
triplanes using our enhanced transformer, SF3D further out-
performs the baseline considerably.
Limitations and Outlook. As seen in Fig. 7 (top row), the
cup’s albedo is not perfectly matched. This is related to the
LDR input, where the dark spots do not contain any useful
information. Furthermore, our roughness and metallic prop-
erties are homogeneous, which limits their usefulness for
objects containing multiple drastically different materials
that are spatially-varying. In addition, our method also in-
troduces material prediction and delighting without explicit
supervision. As we do not require explicit supervision of
these parameters, our method could be extended to train on
real-world datasets, which we leave for future work. Sim-
ilarly, the UV unwrapping could leverage existing datasets
for further improvements.

5. Conclusion
We present SF3D, a fast single view to uv-unwrapped
textured object reconstruction method. In addition to
our fast extraction pipeline, we introduce several ar-
chitectural improvements to feed-forward-based 3D
reconstruction methods, which help our model produce
highly detailed geometry and texture. In our extensive
evaluation, we show that our method outperforms exist-
ing and concurrent baselines in both speed and quality.
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Figure A1. Enhanced Transformer ArchitectureOur new backbone produces higher resolution output triplanes. We further upscale them
using a pixel shuffling [48]. This helps capture high-frequency, high-contrast textures with reduced aliasing as in Fig. 4.

A1. Enhanced Transformer
To reduce the aliasing artifact, we upgrade the transformer
backbone to produce triplanes at a resolution of 384 ×
384. However, naively increasing the triplane tokens in
TripoSR [54] is computationally prohibitive due to the
quadratic complexity of self-attention. Inspired by PointIn-
finity [22], we leverage a two-stream transformer, which has
linear complexity w.r.t. the number of tokens. As illus-
trated in Fig. A1, our architecture consists of two process-
ing streams, the triplane stream and the latent stream. The
triplane stream consists of the raw triplane tokens to be pro-
cessed. In each two-stream unit (gray box in Fig. A1), the
latent stream fetches information from the triplane stream
using cross attention, and performs the main computation
upon a set of constant-sized latent tokens. The latent stream
then updates the triplane stream with the processed latent
tokens. Our full architecture consists of four such two-
stream units. With this computationally detached design,
our transformer is able to produce triplanes at a resolution of
96× 96 with 1024 channels. To further increase the resolu-
tion and reduce aliasing, we integrated a pixel shuffling op-
eration [48], enhancing the triplane resolution to 384× 384
with a feature dimension of 40.

A2. Image metrics
For the image metrics, we follow the pipeline of the shape
metric calculation. We further scale the normalized objects
back to the actual GT scale and run another finer ICP opti-
mization to adjust the fine scale. This transform is then used

GSO OmniObject

Method PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

OpenLRM [18] 15.689 0.787 0.206 13.975 0.760 0.229
TripoSR [54] 16.445 0.789 0.194 14.331 0.755 0.224
LGM [53] 14.377 0.762 0.248 12.662 0.732 0.273
CRM [59] 15.054 0.778 0.228 13.462 0.755 0.245
InstantMesh [68] 15.434 0.785 0.203 13.531 0.757 0.235

Ours 21.247 0.865 0.124 20.134 0.851 0.132

Table A1. Comparison on Image Metrics.

to render meshes. This can still result in texture misalign-
ment for highly symmetrical objects, so we treat the image
metrics as an auxiliary metric to evaluate the final quality
of the asset reconstructions. Therefore, we only report this
metric in the supplements. Table A1 also then supports the
improved visual quality during rendering seen in the main
paper.
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